Bioinformatics tools for marine-derived chemotherapeutic drug discovery and designing

Arya Krishna, Sindura K P, Soni K B, Swapna Alex

Abstract


Cancer is a major menace to the modern world and better treatment opportunities are a need of the hour.  A wide range of therapies is used for combating cancer ranging from surgery to immunotherapy.  Phytochemicals have been used for their anti-cancer activities since ancient times. Marine organisms are also potential sources of drugs with anti-cancer activities even though they are underexplored when compared to terrestrial ecosystems. Bioinformatics tools have accelerated the drug discovery process as they can be used for high throughput screening of compounds. The present review gives a quick glimpse of the anti-cancer compounds derived from marine organisms and the different informatics tools that can be used for research on drugs for cancer.


Keywords


Drug development, Cancer, Protein database, Pathway database, Molecular databases, Anti-cancer compounds.

Full Text:

PDF

References


Aung, T. N., Qu, Z., Kortschak, R. D., & Adelson, D. L. (2017). Understanding the Effectiveness of Natural Compound Mixtures in Cancer through Their Molecular Mode of Action. International Journal of Molecular Sciences, 18(3), 656. https://doi.org/10.3390/ijms18030656

Austin, C. P., Brady, L. S., Insel, T. R., & Collins, F. S. (2004). NIH Molecular Libraries Initiative. Science (New York, N.Y.), 306(5699), 1138–1139. https://doi.org/10.1126/science.1105511

Bechelli, J., Coppage, M., Rosell, K., &Liesveld, J. (2011). Cytotoxicity of algae extracts on normal and malignant cells. Leukemia Research and Treatment, 2011, 373519. https://doi.org/10.4061/2011/373519

Berman, H., Bhat, T., Bourne, P., Feng, Z., Gillil, G., Weissig, H., & Westbrook, J. (2000). The PdbAnd The Challenge Of Structural Genomics.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., &Bourne, P. E. (2000a). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., &Bourne, P. E. (2000b). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242.

Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., &Tasumi, M. (1977). The Protein Data Bank: A computer-based archival file for macromolecular structures. Journal of Molecular Biology, 112(3), 535–542. https://doi.org/10.1016/s0022-2836(77)80200-3

Brahic, C., Darro, F., Belloir, M., Bastide, J., Kiss, R., &Delfourne, E. (2002). Synthesis and cytotoxic evaluation of analogues of the marine pyridoacridineamphimedine. Bioorganic & Medicinal Chemistry, 10(9), 2845–2853. https://doi.org/10.1016/s0968-0896(02)00148-7

Brenner, S. E., Koehl, P., & Levitt, M. (2000). The ASTRAL compendium for protein structure and sequence analysis. Nucleic Acids Research, 28(1), 254–256.

Buttachon, S., May Zin, W. W., Dethoup, T., Gales, L., Pereira, J. A., Silva, A. M. S., &Kijjoa, A. (2016). Secondary Metabolites from the Culture of the Marine Sponge-Associated Fungi Talaromycestratensis and Sporidesmiumcircinophorum. Planta Medica, 82(9–10), 888–896. https://doi.org/10.1055/s-0042-103687

Carletti, I., Banaigs, B., &Amade, P. (2000). Matemone, a new bioactive bromine-containing oxindole alkaloid from the indian ocean sponge Iotrochota purpurea. Journal of Natural Products, 63(7), 981–983. https://doi.org/10.1021/np990408d

Chabner, B. A., & Roberts, T. G. (2005). Timeline: Chemotherapy and the war on cancer. Nature Reviews. Cancer, 5(1), 65–72. https://doi.org/10.1038/nrc1529

Chang, C., Bahadduri, P. M., Polli, J. E., Swaan, P. W., & Ekins, S. (2006). Rapid identification of P-glycoprotein substrates and inhibitors. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 34(12), 1976–1984. https://doi.org/10.1124/dmd.106.012351

Chatr-aryamontri, A., Ceol, A., Palazzi, L. M., Nardelli, G., Schneider, M. V., Castagnoli, L., &Cesareni, G. (2007). MINT: The Molecular INTeraction database. Nucleic Acids Research, 35(Database issue), D572–D574. https://doi.org/10.1093/nar/gkl950

Chen, Y., Cai, X., Pan, J., Gao, J., Li, J., Yuan, J., Fu, L., She, Z., & Lin, Y. (2009). Structure elucidation and NMR assignments for three anthraquinone derivatives from the marine fungus Fusarium sp. (No. ZH-210). Magnetic Resonance in Chemistry: MRC, 47(4), 362–365. https://doi.org/10.1002/mrc.2391

Cho, J. Y., Williams, P. G., Kwon, H. C., Jensen, P. R., &Fenical, W. (2007). Lucentamycins A-D, cytotoxic peptides from the marine-derived actinomycete Nocardiopsislucentensis. Journal of Natural Products, 70(8), 1321–1328. https://doi.org/10.1021/np070101b

Chong, C. R., & Sullivan, D. J. (2007). New uses for old drugs. Nature, 448(7154), 645–646. https://doi.org/10.1038/448645a

Coley, W. B. (1910). The Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proceedings of the Royal Society of Medicine, 3(Surg Sect), 1–48.

Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy, M., Garapati, P., Gopinath, G., Jassal, B., Jupe, S., Kalatskaya, I., Mahajan, S., May, B., Ndegwa, N., Schmidt, E., Shamovsky, V., Yung, C., Birney, E., … Stein, L. (2011). Reactome: A database of reactions, pathways and biological processes. Nucleic Acids Research, 39(Database issue), D691–D697. https://doi.org/10.1093/nar/gkq1018

D’Incalci, M., Badri, N., Galmarini, C. M., &Allavena, P. (2014). Trabectedin, a drug acting on both cancer cells and the tumour microenvironment. British Journal of Cancer, 111(4), 646–650. https://doi.org/10.1038/bjc.2014.149

Du, L., Zhu, T., Liu, H., Fang, Y., Zhu, W., & Gu, Q. (2008). Cytotoxic polyketides from a marine-derived fungus Aspergillus glaucus. Journal of Natural Products, 71(11), 1837–1842. https://doi.org/10.1021/np800303t

Ea, Z. (2006). Clinical research at a crossroads: The NIH roadmap. Journal of Investigative Medicine : The Official Publication of the American Federation for Clinical Research, 54(4). https://doi.org/10.2310/6650.2006.X0016

Espinosa, J. M., Verdun, R. E., & Emerson, B. M. (2003). P53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Molecular Cell, 12(4), 1015–1027. https://doi.org/10.1016/s1097-2765(03)00359-9

Gabrielson, S. W. (2018). SciFinder. Journal of the Medical Library Association : JMLA, 106(4), 588. https://doi.org/10.5195/jmla.2018.515

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., Light, Y., McGlinchey, S., Michalovich, D., Al-Lazikani, B., &Overington, J. P. (2012). ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Research, 40(Database issue), D1100–D1107. https://doi.org/10.1093/nar/gkr777

Ge, X., Sun, C., Feng, Y., Wang, L., Peng, J., Che, Q., Gu, Q., Zhu, T., Li, D., & Zhang, G. (2019). Anthraquinone Derivatives from a Marine-Derived Fungus Sporendonemacasei HDN16-802. Marine Drugs, 17(6), E334. https://doi.org/10.3390/md17060334

Goto, S., Nishioka, T., &Kanehisa, M. (2000). LIGAND: Chemical database of enzyme reactions. Nucleic Acids Research, 28(1), 380–382.

Hassouani, M., Sabour, B., Belattmania, Z., Samir, E. A., Reani, A., Ribeiro, T., Castelo-Branco, R., Ramos, V., Preto, M., Costa, P., Urbatzka, R., Leão, P., & Vasconcelos, V. (2017). In vitro anticancer, antioxidant and antimicrobial potential of Lyngbyaaestuarii (Cyanobacteria) from the Atlantic coast of Morocco. 4923.

Haw, R., Hermjakob, H., D’Eustachio, P., & Stein, L. (2011). Reactome Pathway Analysis to Enrich Biological Discovery in Proteomics Datasets. Proteomics, 11(18), 3598–3613. https://doi.org/10.1002/pmic.201100066

Haw, R., & Stein, L. (2012). Using the reactome database. Current Protocols in Bioinformatics, Chapter 8, Unit8.7. https://doi.org/10.1002/0471250953.bi0807s38

Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada, Y., Hirai, M., Nakanishi, H., Ikeda, K., &Nishioka, T. (2010). MassBank: A public repository for sharing mass spectral data for life sciences.J. Journal of Mass Spectrometry : JMS, 45, 703–714. https://doi.org/10.1002/jms.1777

Huang, H., Wang, F., Luo, M., Chen, Y., Song, Y., Zhang, W., Zhang, S., & Ju, J. (2012). Halogenated Anthraquinones from the Marine-Derived Fungus Aspergillus sp. SCSIO F063. Journal of Natural Products, 75(7), 1346–1352. https://doi.org/10.1021/np3002699

Hubbard, T., Ailey, B., Brenner, S., Murzin, A., &Chothia, C. (1998). SCOP, Structural Classification of Proteins Database: Applications to Evaluation of the Effectiveness of Sequence Alignment Methods and Statistics of Protein Structural Data. Acta Crystallographica. Section D, Biological Crystallography, 54, 1147–1154. https://doi.org/10.1107/S0907444998009172

Hurley, L. (2002). Hurley, L.H. DNA and its associated processes as targets for cancer therapy. Nat. Rev. Cancer 2, 188-200. Nature Reviews. Cancer, 2, 188–200. https://doi.org/10.1038/nrc749

Irwin, J. J., & Shoichet, B. K. (2005). ZINC – A Free Database of Commercially Available Compounds for Virtual Screening. Journal of Chemical Information and Modeling, 45(1), 177–182. https://doi.org/10.1021/ci049714

Janssen, A., &Medema, R. H. (2011). Mitosis as an anti-cancer target. Oncogene, 30(25), 2799–2809. https://doi.org/10.1038/onc.2011.30

Jolivette, L. J., & Ekins, S. (2007). Methods for predicting human drug metabolism. Advances in Clinical Chemistry, 43, 131–176. https://doi.org/10.1016/s0065-2423(06)43005-5

Kashman, Y., Koren-Goldshlager, G., Gravalos, M. D. G., &Schleyer, M. (1999). Halitulin, a new cytotoxic alkaloid from the marine sponge Haliclonatulearensis. Tetrahedron Letters, 40(5), 997–1000. https://doi.org/10.1016/S0040-4039(98)02467-8

Kaufmann, S. H., & Earnshaw, W. C. (2000). Induction of apoptosis by cancer chemotherapy. Experimental Cell Research, 256(1), 42–49. https://doi.org/10.1006/excr.2000.4838

Kaur, S., & Kaur, S. (2015). Bacteriocins as Potential Anticancer Agents. Frontiers in Pharmacology, 6, 272. https://doi.org/10.3389/fphar.2015.00272

Khalifa, S. A. M., Elias, N., Farag, M. A., Chen, L., Saeed, A., Hegazy, M.-E. F., Moustafa, M. S., Abd El-Wahed, A., Al-Mousawi, S. M., Musharraf, S. G., Chang, F.-R., Iwasaki, A., Suenaga, K., Alajlani, M., Göransson, U., & El-Seedi, H. R. (2019). Marine Natural Products: A Source of Novel Anticancer Drugs. Marine Drugs, 17(9), E491. https://doi.org/10.3390/md17090491

Kuhn, M., Szklarczyk, D., Franceschini, A., von Mering, C., Jensen, L. J., & Bork, P. (2012). STITCH 3: Zooming in on protein–chemical interactions. Nucleic Acids Research, 40(Database issue), D876–D880. https://doi.org/10.1093/nar/gkr1011

Kuhn, M., von Mering, C., Campillos, M., Jensen, L. J., & Bork, P. (2008). STITCH: Interaction networks of chemicals and proteins. Nucleic Acids Research, 36(Database issue), D684–D688. https://doi.org/10.1093/nar/gkm795

Lazo, J. S., Brady, L. S., & Dingledine, R. (2007). Building a pharmacological lexicon: Small molecule discovery in academia. Molecular Pharmacology, 72(1), 1–7. https://doi.org/10.1124/mol.107.035113

Lee, Y. M., Li, H., Hong, J., Cho, H. Y., Bae, K. S., Kim, M. A., Kim, D.-K., & Jung, J. H. (2010). Bioactive metabolites from the sponge-derived fungus Aspergillus versicolor. Archives of Pharmacal Research, 33(2), 231–235. https://doi.org/10.1007/s12272-010-0207-4

Li, H., Gao, Z., Kang, L., Zhang, H., Yang, K., Yu, K., Luo, X., Zhu, W., Chen, K., Shen, J., Wang, X., & Jiang, H. (2006). TarFisDock: A web server for identifying drug targets with docking approach. Nucleic Acids Research, 34(Web Server issue), W219-224. https://doi.org/10.1093/nar/gkl114

Licata, L., Briganti, L., Peluso, D., Perfetto, L., Iannuccelli, M., Galeota, E., Sacco, F., Palma, A., Nardozza, A. P., Santonico, E., Castagnoli, L., &Cesareni, G. (2012). MINT, the molecular interaction database: 2012 update. Nucleic Acids Research, 40(Database issue), D857-861. https://doi.org/10.1093/nar/gkr930

Lindequist, U. (2016). Marine-Derived Pharmaceuticals – Challenges and Opportunities. Biomolecules & Therapeutics, 24(6), 561–571. https://doi.org/10.4062/biomolther.2016.181

Liu, T., Lin, Y., Wen, X., Jorissen, R. N., & Gilson, M. K. (2007). BindingDB: A web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Research, 35(Database issue), D198–D201. https://doi.org/10.1093/nar/gkl999

Lo Conte, L., Ailey, B., Hubbard, T. J. P., Brenner, S. E., Murzin, A. G., &Chothia, C. (2000). SCOP: A Structural Classification of Proteins database. Nucleic Acids Research, 28(1), 257–259.

Mann, J. (2002). Natural products in cancer chemotherapy: Past, present and future. Nature Reviews Cancer, 2(2), 143–148. https://doi.org/10.1038/nrc723

Markosian, C., Di Costanzo, L., Sekharan, M., Shao, C., Burley, S. K., &Zardecki, C. (2018). Analysis of impact metrics for the Protein Data Bank. Scientific Data, 5(1), 180212. https://doi.org/10.1038/sdata.2018.212

Matthews, L., Gopinath, G., Gillespie, M., Caudy, M., Croft, D., de Bono, B., Garapati, P., Hemish, J., Hermjakob, H., Jassal, B., Kanapin, A., Lewis, S., Mahajan, S., May, B., Schmidt, E., Vastrik, I., Wu, G., Birney, E., Stein, L., &D’Eustachio, P. (2009). Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Research, 37(Database issue), D619-622. https://doi.org/10.1093/nar/gkn863

Mayer, A. M. S., Glaser, K. B., Cuevas, C., Jacobs, R. S., Kem, W., Little, R. D., McIntosh, J. M., Newman, D. J., Potts, B. C., & Shuster, D. E. (2010). The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends in Pharmacological Sciences, 31(6), 255–265. https://doi.org/10.1016/j.tips.2010.02.005

Medina, R. A., Goeger, D. E., Hills, P., Mooberry, S. L., Huang, N., Romero, L. I., Ortega-Barría, E., Gerwick, W. H., & McPhail, K. L. (2008). Coibamide A, a Potent Antiproliferative Cyclic Depsipeptide from the Panamanian Marine Cyanobacterium Leptolyngbya sp. Journal of the American Chemical Society, 130(20), 6324–6325. https://doi.org/10.1021/ja801383f

Molinski, T. F., Dalisay, D. S., Lievens, S. L., &Saludes, J. P. (2009). Drug development from marine natural products. Nature Reviews. Drug Discovery, 8(1), 69–85. https://doi.org/10.1038/nrd2487

Mooberry, S. L., Leal, R. M., Tinley, T. L., Luesch, H., Moore, R. E., & Corbett, T. H. (2003). The molecular pharmacology of symplostatin 1: A new antimitotic dolastatin 10 analog. International Journal of Cancer, 104(4), 512–521. https://doi.org/10.1002/ijc.10982

Ni, Y., Schwaneberg, U., & Sun, Z.-H. (2008). Arginine deiminase, a potential anti-tumor drug. Cancer Letters, 261(1), 1–11. https://doi.org/10.1016/j.canlet.2007.11.038

Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., &Kanehisa, M. (1999). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 27(1), 29–34. https://doi.org/10.1093/nar/27.1.29

Pence, H. E., & Williams, A. (2010). ChemSpider: An Online Chemical Information Resource. Journal of Chemical Education, 87(11), 1123–1124. https://doi.org/10.1021/ed100697w

Sabry, O. M. M., Goeger, D. E., Valeriote, F. A., &Gerwick, W. H. (2017). Cytotoxic Halogenated Monoterpenes FromPlocamiumcartilagineum. Natural Product Research, 31(3), 261–267. https://doi.org/10.1080/14786419.2016.1230115

Saeed, A. F. U. H., Su, J., & Ouyang, S. (2021). Marine-derived drugs: Recent advances in cancer therapy and immune signaling. Biomedicine & Pharmacotherapy, 134, 111091. https://doi.org/10.1016/j.biopha.2020.111091

Schwall, K., &Zielenbach, K. (2000). SciFinder a new generation of research tool. Undefined. https://www.semanticscholar.org/paper/SciFinder-a-new-generation-of-research-tool-Schwall-Zielenbach/cda4aa9139cd5109630c373a8f28312ffed804c6

Seca, A. M. L., & Pinto, D. C. G. A. (2019). Biological Potential and Medical Use of Secondary Metabolites. Medicines, 6(2), 66. https://doi.org/10.3390/medicines6020066

Shao, C., She, Z., Guo, Z., Peng, H., Cai, X., Zhou, S., Gu, Y., & Lin, Y. (2007). 1H and 13C NMR assignments for two anthraquinones and two xanthones from the mangrove fungus (ZSUH-36). Magnetic Resonance in Chemistry: MRC, 45(5), 434–438. https://doi.org/10.1002/mrc.1974

Smit, A. J. (2004). Medicinal and pharmaceutical uses of seaweed natural products: A review. Journal of Applied Phycology, 16(4), 245–262. https://doi.org/10.1023/B:JAPH.0000047783.36600.ef

Sterling, T., & Irwin, J. J. (2015). ZINC 15 – Ligand Discovery for Everyone. Journal of Chemical Information and Modeling, 55(11), 2324–2337. https://doi.org/10.1021/acs.jcim.5b00559

Stevenson, C. S., Capper, E. A., Roshak, A. K., Marquez, B., Eichman, C., Jackson, J. R., Mattern, M., Gerwick, W. H., Jacobs, R. S., & Marshall, L. A. (2002). The identification and characterization of the marine natural product scytonemin as a novel antiproliferative pharmacophore. The Journal of Pharmacology and Experimental Therapeutics, 303(2), 858–866. https://doi.org/10.1124/jpet.102.036350

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. von. (2019). STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131

Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2021). The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605–D612. https://doi.org/10.1093/nar/gkaa1074

Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N. T., Roth, A., Bork, P., Jensen, L. J., & von Mering, C. (2017). The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Research, 45(Database issue), D362–D368. https://doi.org/10.1093/nar/gkw937

The UniProt Consortium. (2010). The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Research, 38(suppl_1), D142–D148. https://doi.org/10.1093/nar/gkp846

The UniProt Consortium. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515. https://doi.org/10.1093/nar/gky1049

Torres, Y. R., Berlinck, R. G., Magalhães, A., Schefer, A. B., Ferreira, A. G., Hajdu, E., &Muricy, G. (2000). Arenosclerins A-C and haliclonacyclamine E, new tetracyclic alkaloids from a Brazilian endemic Haplosclerid sponge Arenosclerabrasiliensis. Journal of Natural Products, 63(8), 1098–1105. https://doi.org/10.1021/np9905618

Trisuwan, K., Khamthong, N., Rukachaisirikul, V., Phongpaichit, S., Preedanon, S., &Sakayaroj, J. (2010). Anthraquinone, cyclopentanone, and naphthoquinone derivatives from the sea fan-derived fungi Fusarium spp. PSU-F14 and PSU-F135. Journal of Natural Products, 73(9), 1507–1511. https://doi.org/10.1021/np100282k

UniProt: The universal protein knowledgebase. (2017). Nucleic Acids Research, 45(Database issue), D158–D169. https://doi.org/10.1093/nar/gkw1099

Wang, C., Hu, G., Wang, K., Brylinski, M., Xie, L., & Kurgan, L. (2016). PDID: Database of molecular-level putative protein–drug interactions in the structural human proteome. Bioinformatics, 32(4), 579–586. https://doi.org/10.1093/bioinformatics/btv597

Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., & Bryant, S. H. (2009). PubChem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Research, 37(Web Server), W623–W633. https://doi.org/10.1093/nar/gkp456

Williams, David. E., Dalisay, D. S., Patrick, B. O., Matainaho, T., Andrusiak, K., Deshpande, R., Myers, C. L., Piotrowski, J. S., Boone, C., Yoshida, M., & Andersen, R. J. (2011). Padanamides A and B, Highly Modified Linear Tetrapeptides Produced in Culture by a Streptomyces sp. Isolated from a Marine Sediment. Organic Letters, 13(15), 3936–3939. https://doi.org/10.1021/ol2014494

Wishart, D. S. (2007). Discovering drug targets through the web. Comparative Biochemistry and Physiology. Part D, Genomics & Proteomics, 2(1), 9–17. https://doi.org/10.1016/j.cbd.2006.01.003

Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., &Hassanali, M. (2008). DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Research, 36(Database issue), D901–D906. https://doi.org/10.1093/nar/gkm958

Wu, Z.-H., Liu, D., Xu, Y., Chen, J.-L., & Lin, W.-H. (2018). Antioxidant xanthones and anthraquinones isolated from a marine-derived fungus Aspergillus versicolor. Chinese Journal of Natural Medicines, 16(3), 219–224. https://doi.org/10.1016/S1875-5364(18)30050-5

Xia, X., Li, Q., Li, J., Shao, C., Zhang, J., Zhang, Y., Liu, X., Lin, Y., Liu, C., & She, Z. (2011). Two new derivatives of griseofulvin from the mangrove endophytic fungus Nigrospora sp. (Strain No. 1403) from Kandeliacandel (L.) Druce. Planta Medica, 77(15), 1735–1738. https://doi.org/10.1055/s-0030-1271040

Zerhouni, E. (2003). Medicine. The NIH Roadmap. Science (New York, N.Y.), 302(5642), 63–72. https://doi.org/10.1126/science.1091867

Zhang, H. L., Hua, H. M., Pei, Y. H., & Yao, X. S. (2004). Three new cytotoxic cyclic acylpeptides from marine Bacillus sp. Chemical & Pharmaceutical Bulletin, 52(8), 1029–1030. https://doi.org/10.1248/cpb.52.1029

Zheng, C.-J., Shao, C.-L., Guo, Z.-Y., Chen, J.-F., Deng, D.-S., Yang, K.-L., Chen, Y.-Y., Fu, X.-M., She, Z.-G., Lin, Y.-C., & Wang, C.-Y. (2012). Bioactive hydroanthraquinones and anthraquinone dimers from a soft coral-derived Alternaria sp. Fungus. Journal of Natural Products, 75(2), 189–197. https://doi.org/10.1021/np200766d


Refbacks

  • There are currently no refbacks.


Informatics Studies:  ISSN: 2583-8994 (Online), 2320-530X (Print)