Advancing Agricultural Sustainability: Harnessing Crop Modeling for Climate Change Resilience and Global Food Security

Adarsh S., Susan K Milka, Arindam Deb

Abstract


Crop models are mathematical representations endowed with the capacity to enhance productivity through data utilisation alongside their calibration and validation methodologies. Increasingly, research is leveraging simulation models, facilitating more targeted and efficient planning. This enables scientists to forecast weather impacts, soil characteristics, seed varieties, fertiliser management, and irrigation on crop growth and development. Furthermore, crop models can address knowledge gaps, extrapolate across different cropping cycles, explore management strategies, and anticipate the ramifications of future climate change. Moreover, they prove valuable for industry planning, operational management, environmental considerations, and yield predictions. Crop simulation models can be instrumental in designing crop ideotypes tailored to specific conditions, with potential applications across diverse settings.


Keywords


Agriculture, Informatics, Crop Modelling; Calibration

Full Text:

PDF

References


Adarsh, S., Chacko, A., Shahiba A. M., and Jose, J. (2023a). New Generation Agriculture: Social media and Artificial Intelligence [abstract]. In: Abstracts, Abstract Volume 2nd International Conference on Biodiversity: Exploration, Exploitation and Conservation for Sustainable Development (ICB-2023) on 10-11th February 2023, Assam, p.16.https://doi.org/10.5281/zenodo.7755040

Adarsh, S., Chacko, A., Shahiba, A. M., Mathew, S., and Thomas, G. (2023b). Social Media and Artificial Intelligence for New Generation Agriculture. In: Bhuyan, S. I., Islam, M., Teronpi, V., Agarwal, H., and Barua, D.(eds), Biodiversity conservation: issues and prospects. Mahaveer Publication, Dibrugarh, Assam, pp.100-106. ISBN: 978-81-961-731-0-4. https://doi.org/10.5281/zenodo.8265123

Afzali, M., Afzali, A., and Zahedi, G. (2012). The potential of artificial neural network technique in daily and monthly ambient air temperature prediction. International Journal of Environmental science and development, 3(1), 33.

Andrew, I.K., and Storkey, J. (2017). Using simulation models to investigate the cumulative effects of sowing rate, sowing date and cultivar choice on weed competition. Crop Protection, 95, 109-115.

Andrews, S. S., Karlen, D. L., and Cambardella, C. A. (2004). The soil management assessment framework: a quantitative soil quality evaluation method. Soil Science Society of America Journal, 68(6), 1945-1962.

Archer, N. P., and Ghasemzadeh, F. (1999). An integrated framework for project portfolio selection. International Journal of Project Management, 17(4), 207-216.

Asadisaghandi, J., and Tahmasebi, P. (2011). Comparative evaluation of back-propagation neural network learning algorithms and empirical correlations for prediction of oil PVT properties in Iran oilfields. Journal of Petroleum Science and Engineering, 78(2), 464-475.

Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., … and Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143-147.

Asseng, S., Martre, P., Maiorano, A., Rötter, R. P., O’Leary, G. J., Fitzgerald, G. J., Girousse, C., Motzo, R., Giunta, F., Babar, M. A., Reynolds, M. P., Kheir, A. M. S., Thorburn, P. J., Waha, K., Ruane, A. C., Aggarwal, P. K., Ahmed, M., Balkovič, J., Basso, B., … and Ewert, F. (2019). Climate change impact and adaptation for wheat protein. Global Change Biology, 25(1), 155–173. https://doi.org/10.1111/gcb.14481

Baroni, G., and Tarantola, S. (2014). A General Probabilistic Framework for uncertainty and global sensitivity analysis of deterministic models: A hydrological case study. Environmental Modelling and Software, 51, 26-34.

Basheer, I. A., and Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of microbiological methods, 43(1), 3-31.

Basso, B., and Liu, L. (2019). Seasonal crop yield forecast: Methods, applications, and accuracies. advances in agronomy, 154, 201-255.

Bastiaans, L., and Storkey, J. (2017). Descriptive and mechanistic models of crop-weed competition. In: Hatcher, P.E., and Froud-Williams, R.J. (eds), Weed Research: Expanding Horizons. pp.33-60.

Baumann, P., Lee, J., Behrens, T., Biswas, A., Six, J., McLachlan, G., and Viscarra Rossel, R. A. (2022). Modelling soil water retention and water‐holding capacity with visible–near‐infrared spectra and machine learning. European Journal of Soil Science, 73(2), e13220.

Bayarri, M. J., Berger, J. O., Paulo, R., Sacks, J., Cafeo, J. A., Cavendish, J., … and Tu, J. (2007). A framework for validation of computer models. Technometrics, 49(2), 138-154.

Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (2013). Nonlinear programming: theory and algorithms. John wiley and sons.

Beaver, W., Lambert, R., and Morse, D. (1980). The information content of security prices. journal of Accounting and Economics, 2(1), 3-28.

Board, A. (2005). Stochastic modelling and applied probability. Springer.

Bohanec, M., Cortet, J., Griffiths, B., Žnidaršic, M., Debeljak, M., Caul, ˇ S., Thompson, J., and Krogh, P. H. (2007). A qualitative multi-attribute model for assessing the impact of cropping systems on soil quality. Pedobiologia, 51, 239–250. doi: 10.1016/j.pedobi.2007.03.006

Boote, K. J., Jones, J. W., and Hoogenboom, G. (2018). Simulation of crop growth: CROPGRO model. Agricultural systems modeling and simulation, pp. 651-692. CRC Press.

Boote, K. J., Jones, J. W., Hoogenboom, G., and White, J. W. (2010). The role of crop systems simulation in agriculture and environment. International Journal of Agricultural and Environmental Information Systems (IJAEIS), 1(1), 41-54.

Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical science, 16(3), 199-231.

Brinkgreve, R. B. (2005). Selection of soil models and parameters for geotechnical engineering application. Soil constitutive models: Evaluation, selection, and calibration (pp. 69-98).

Burgess, A. J., Masclaux‐Daubresse, C., Strittmatter, G., Weber, A. P., Taylor, S. H., Harbinson, J.,… and Baekelandt, A. (2023). Improving crop yield potential: Underlying biological processes and future prospects. Food and Energy Security, 12(1), e435.

Burgueño, J., Crossa, J., Cornelius, P. L., and Yang, R. C. (2008). Using factor analytic models for joining environments and genotypes without crossover genotype× environment interaction. Crop Science, 48(4), 1291-1305.

Cai, Y., Rajaram, D., and Mavris, D. N. (2022). Simultaneous aircraft sizing and multi-objective optimization considering off-design mission performance during early design. Aerospace Science and Technology, 126, 107662.

Carabantes, M. (2020). Black-box artificial intelligence: an epistemological and critical analysis. AI and society, 35(2), 309-317.

Cellier, F. E., and Greifeneder, J. (2013). Continuous system modeling. Springer Science and Business Media.

Challinor, A. J., and Wheeler, T. R. (2008). Crop yield reduction in the tropics under climate change: processes and uncertainties. Agricultural and Forest Meteorology, 148(3), 343-356.

Challinor, A. J., Ewert, F., Arnold, S., Simelton, E., and Fraser, E. (2009). Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. Journal of experimental botany, 60(10), 2775-2789.

Cheeroo-Nayamuth, B. F. (1999). Crop modelling/simulation: an overview. Annual meeting of agricultural scientists. Réduit: Food and Agricultural Research Council.

Chipanshi, A. C., Chanda, R., and Totolo, O. (2003). Vulnerability assessment of the maize and sorghum crops to climate change in Botswana. Climatic change, 61, 339-360.

Cooper, M., Messina, C. D., Podlich, D., Totir, L. R., Baumgarten, A., Hausmann, N. J., and Graham, G. (2014). Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop and Pasture Science, 65(4), 311-336.

Cousens, R. (1985). A simple model relating yield loss to weed density. Annals of applied biology, 107(2), 239-252.

Craver, C. F. (2006). When mechanistic models explain. Synthese, 153(3), 355-376.

Crow, H., Gage, H., Hampson, S., Hart, J., Kimber, A., Storey, L., and Thomas, H. (2002). Measurement of satisfaction with health care: Implications for practice from a systematic review of the literature. Health technology assessment.

Dahikar, S. S., and Rode, S. V. (2014). Agricultural crop yield prediction using artificial neural network approach. International journal of innovative research in electrical, electronics, instrumentation and control engineering, 2(1), 683-686.

Dale, V. H., and Polasky, S. (2007). Measures of the effects of agricultural practices on ecosystem services. Ecological economics, 64(2), 286-296.

Dawson, C. J., and Hilton, J. (2011). Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy, 36, S14-S22.

de Wit, C. T., Brouwer, R., and De Vries, F. P. (1970). The simulation of photosynthetic systems.In Proceedings of the IBP/PP technical meeting, Trebon, 14-21 September 1969, pp. 47-70.

de Wit, C. T., Brouwer, R., and De Vries, F. P. (1971). A dynamic model of plant and crop growth. In Potential crop production: a case study (pp. 117-142). Heinemann educational books.

de Wit, C.T. (1960). On competition. Pudoc, Wageningen, 81p.

de Wit, C.T., and de Vries, F.P. (1982). L'analyse des systèmes de production primaire. In: La productivité des pâturages Sahéliens. Pudoc. pp. 20-23.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., ... and Ng, A. (2012). Large scale distributed deep networks. Advances in neural information processing systems, 25.

Debeljak, M., Trajanov, A., Kuzmanovski, V., Schröder, J., Sandén, T., Spiegel, H., … and Henriksen, C. B. (2019). A field-scale decision support system for assessment and management of soil functions. Frontiers in Environmental Science, 7:115. doi: 10.3389/fenvs.2019.00115.

Dent, J. B. (2012). Systems simulation in agriculture. Springer Science and Business Media.

Dessouki, M., Myers, M. T., and Hathon, L. A. (2020). A New Approach to Calibrate the Modified Cam Clay Model by Using Multistage Triaxial Tests on Resedimented Mudrocks. In ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-2020). ARMA.

Duc, N. T., Ramlal, A., Rajendran, A., Raju, D., Lal, S. K., Kumar, S., ... and Chinnusamy, V. (2023). Image-based phenotyping of seed architectural traits and prediction of seed weight using machine learning models in soybean. Frontiers in Plant Science, 14, 1206357.

Dutta, S. C., and Roy, R. (2002). A critical review on idealization and modeling for interaction among soil–foundation–structure system. Computers and structures, 80(20-21), 1579-1594.

Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., Best, N., Eisner, S., Fekete, B. M., Folberth, C., Foster, I., Gosling, S. N., Haddeland, I., Khabarov, N., Ludwig, F., Masaki, Y., … and Wisser, D. (2014). Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3239–3244. https://doi.org/10.1073/pnas.1222474110

Elshafei, Y., Sivapalan, M., Tonts, M., and Hipsey, M. R. (2014). A prototype framework for models of socio-hydrology: identification of key feedback loops and parameterisation approach. Hydrology and Earth System Sciences, 18(6), 2141-2166.

Engel, A. K., and Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in cognitive sciences, 5(1), 16-25.

Escamilla-García, A., Soto-Zarazúa, G. M., Toledano-Ayala, M., Rivas-Araiza, E., and Gastélum-Barrios, A. (2020). Applications of artificial neural networks in greenhouse technology and overview for smart agriculture development. Applied Sciences, 10(11), 3835.

Fan, M., Shen, J., Yuan, L., Jiang, R., Chen, X., Davies, W. J., and Zhang, F. (2012). Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. Journal of experimental botany, 63(1), 13-24.

Fenton, N. E., and Neil, M. (1999). A critique of software defect prediction models. IEEE Transactions on software engineering, 25(5), 675-689.

Ferreira, C. S., Seifollahi-Aghmiuni, S., Destouni, G., Ghajarnia, N., and Kalantari, Z. (2022). Soil degradation in the European Mediterranean region: Processes, status and consequences. Science of the Total Environment, 805, 150106.

Fowler, H. J., Blenkinsop, S., and Tebaldi, C. (2007). Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(12), 1547-1578.

Fresco, L. O., and Kroonenberg, S. B. (1992). Time and spatial scales in ecological sustainability. Land use policy, 9(3), 155-168.

Giere, R. N. (1999). Using models to represent reality. In Model-based reasoning in scientific discovery (pp. 41-57). Boston, MA: Springer US.

Goff, S. A., Vaughn, M., McKay, S., Lyons, E., Stapleton, A. E., Gessler, D., ... and Stanzione, D. (2011). The iPlant collaborative: cyberinfrastructure for plant biology. Frontiers in plant science, 2, 34.

Gond, V., De Pury, D. G., Veroustraete, F., and Ceulemans, R. (1999). Seasonal variations in leaf area index, leaf chlorophyll, and water content; scaling-up to estimate fAPAR and carbon balance in a multilayer, multispecies temperate forest. Tree physiology, 19(10), 673-679.

González-Sanchez, A., Frausto–Solís, J., and Ojeda-Bustamante, W. (2014). Predictive ability of machine learning methods for massive crop yield prediction. Spanish Journal of Agricultural Research, 12(2), 313. https://doi.org/10.5424/sjar/2014122-4439

Goswami, P. G., and Rao, E. P. (2016). Smart and sustainable agriculture through weather and climate informatics and multi-scale modelling. CABI Reviews, (2015), 1-13.

Grassini, P., van Bussel, L. G., Van Wart, J., Wolf, J., Claessens, L., Yang, H., ... and Cassman, K. G. (2015). How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Research, 177, 49-63.

Guo, D., Zhang, Q., and Hu, G. (2022). Rational design of hyperelastic semi-linear material and its application to elastic wave control. Mechanics of Materials, 166, 104237.

Nain, G., Bhardwaj, N., Jaslam, P. K. M., and Dagar, C. S. (2021). Rice yield forecasting using agro-meteorological variables: a multivariate approach. Journal of Agrometeorology, 23(1), 100-105. https://doi.org/10.54386/jam.v23i1.94

Hammer, G., Cooper, M., Tardieu, F., Welch, S., Walsh, B., van Eeuwijk, F., ... and Podlich, D. (2006). Models for navigating biological complexity in breeding improved crop plants. Trends in plant science, 11(12), 587-593.

Hara, P., Piekutowska, M., and Niedbała, G. (2021). Selection of independent variables for crop yield prediction using artificial neural network models with remote sensing data. Land, 10(6), 609.

Hara, P., Piekutowska, M., and Niedbała, G. (2021). Selection of independent variables for crop yield prediction using artificial neural network models with remote sensing data. Land, 10(6), 609.

Hobbs, P. R. (2007). Conservation agriculture: what is it and why is it important for future sustainable food production?. The Journal of Agricultural Science, 145(2), 127.

Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., ... and Keating, B. A. (2014). APSIM–evolution towards a new generation of agricultural systems simulation. Environmental Modelling and Software, 62, 327-350.

Horie, T., Yajima, M., and Nakagawa, H. (1992). Yield forecasting. Agricultural systems, 40(1-3), 211-236.

Huang, J., Gómez-Dans, J. L., Huang, H., Ma, H., Wu, Q., Lewis, P. E., ... and Xie, X. (2019). Assimilation of remote sensing into crop growth models: Current status and perspectives. Agricultural and forest meteorology, 276, 107609.

Jain, A., McClendon, R. W., and Hoogenboom, G. (2006). Freeze prediction for specific locations using artificial neural networks. Transactions of the ASABE, 49(6), 1955-1962.

Jaiswal, R. K., Tyagi, J. V., Galkate, R. V., and Lohani, A. K. (2020). Evaluation of regional soil water retention (swr) characteristics for soils in central India. Journal of Applied Water Engineering and Research, 8(3), 219-230.

Jansen, B., Kalbitz, K., and McDowell, W. H. (2014). Dissolved organic matter: linking soils and aquatic systems. Vadose Zone Journal, 13(7), 1-4. https://doi.org/10.2136/vzj2014.05.0051

Jenkins, D. A., Sperrin, M., Martin, G. P., and Peek, N. (2018). Dynamic models to predict health outcomes: current status and methodological challenges. Diagnostic and prognostic research, 2, 1-9.

Jha, K., Doshi, A., Patel, P., and Shah, M. (2019). A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture, 2, 1-12.

Jiang, X., Guo, J., Yang, H., Bao, S., Wen, C., and Chen, J. (2022). Study on Stress–Strain Relationship of Coir Fiber-Reinforced Red Clay Based on Duncan–Chang Model. Applied Sciences, 13(1), 556.

Johansson, E. M., Dowla, F. U., and Goodman, D. M. (1991). Backpropagation learning for multilayer feed-forward neural networks using the conjugate gradient method. International Journal of Neural Systems, 2(04), 291-301.

Jones, C. A., Dyke, P. T., Williams, J. R., Kiniry, J. R., Benson, V. W., and Griggs, R. H. (1991). EPIC: an operational model for evaluation of agricultural sustainability. Agricultural Systems, 37(4), 341-350.

Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., ... and Wheeler, T. R. (2017). Brief history of agricultural systems modeling. Agricultural systems, 155, 240-254.

Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., Godfray, H. C. J., Herrero, M., Howitt, R. E., Janssen, S., Keating, B. A., Munoz-Carpena, R., Porter, C. H., Rosenzweig, C., and Wheeler, T. R. (2017). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems, 155, 269–288. https://doi.org/10.1016/j.agsy.2016.09.021

Dawson, J., Rivière, P., Berthellot, J., Mercier, F., Kochko, P. d., Galic, N., … and Goldringer, I. (2011). Collaborative plant breeding for organic agricultural systems in developed countries. Sustainability, 3(8), 1206-1223. https://doi.org/10.3390/su3081206

Karpman, E., Kövecses, J., and Teichmann, M. (2023). Terramechanics models augmented by machine learning representations. Journal of Terramechanics, 107, 75-89.

Kaul, M., Hill, R. L., and Walthall, C. (2005). Artificial neural networks for corn and soybean yield prediction. Agricultural Systems, 85(1), 1-18.

Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., ... and Smith, C. J. (2003). An overview of APSIM, a model designed for farming systems simulation. European journal of agronomy, 18(3-4), 267-288.

Knight, K. (1990). Connectionist ideas and algorithms. Communications of the ACM, 33(11), 58-74.

Krishna Singh, R. (2008). Artificial Neural Network Methodology for Modelling and Forecasting Maize Crop Yield. Agricultural Economics Research Review, 21(1).

Kropff, M.J. and Spitters, C.J.T. (1991). A simple model of crop loss by weed competition from early observations on relative leaf area of weeds. Weed Res. 31, 97–105.

Kropff, M.J. (1993). Eco-physiological models for crop-weed competition. In: Kropff, M.J. and van Laar, H.H. (eds), Modelling Crop-weed Interactions. BPCC Wheatos Ltd., Exeter, pp. 25-30.

Krotov, D., and Hopfield, J. J. (2019). Unsupervised learning by competing hidden units. Proceedings of the National Academy of Sciences, 116(16), 7723-7731.

Labadie, J. W. (2004). Optimal operation of multireservoir systems: State-of-the-art review. Journal of water resources planning and management, 130(2), 93-111.

Lachhwani, K. (2020). Application of neural network models for mathematical programming problems: a state of art review. Archives of Computational Methods in Engineering, 27(1), 171-182.

LeCun, Y., Bengio, Y., and Hinton, G. E. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539

Ledesma, P., and Usaola, J. (2005). Doubly fed induction generator model for transient stability analysis. IEEE transactions on energy conversion, 20(2), 388-397.

Lee, K. Y., Cha, Y. T., and Park, J. H. (1992). Short-term load forecasting using an artificial neural network. IEEE transactions on power systems, 7(1), 124-132.

Lehmann, N., Finger, R., Klein, T., Calanca, P., and Walter, A. (2013). Adapting crop management practices to climate change: Modeling optimal solutions at the field scale. Agricultural Systems, 117, 55-65.

Lemaire, G., Franzluebbers, A., de Faccio Carvalho, P. C., and Dedieu, B. (2014). Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agriculture, Ecosystems and Environment, 190, 4-8.

Li, Y., and Chao, X. (2020). ANN-based continual classification in agriculture. Agriculture, 10(5), 178.

Liliane, T. N., and Charles, M. S. (2020). Factors affecting yield of crops. Agronomy-climate change and food security, 9.

Lin, B. B. (2011). Resilience in agriculture through crop diversification: adaptive management for environmental change. BioScience, 61(3), 183-193.

Liu, C., Bhullar, M.S., Kaur, T., Kumar, J., Reddy, S.R.S., Singh, M., and Kaundun, S.S. (2021). Modelling the effect and variability of integrated weed management of Phalaris minor in rice-wheat cropping systems in northern India. Agron. 11(11): 2331.

Loague, K., and Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of contaminant hydrology, 7(1-2), 51-73.

Lobell, D. B., and Burke, M. B. (2010). On the use of statistical models to predict crop yield responses to climate change. Agricultural and forest meteorology, 150(11), 1443-1452.

Lobell, D. B., Bänziger, M., Magorokosho, C., and Vivek, B. (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 1(1), 42–45. https://doi.org/10.1038/nclimate1043

Lobell, D. B., Thau, D., Seifert, C., Engle, E., and Little, B. (2015). A scalable satellite-based crop yield mapper. Remote Sensing of Environment, 164, 324-333.

Lopez-Arreguin, A. J. R., and Montenegro, S. (2021). Machine learning in planetary rovers: A survey of learning versus classical estimation methods in terramechanics for in situ exploration. Journal of Terramechanics, 97, 1-17.

Maier, H. R., and Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental modelling and software, 15(1), 101-124.

Manjanath, P. P., and Dhanya, M. (2020). Constitutive Behavior of Fine-Grained Soil: A Review.

Matthews, R., Stephens, W., Hess, T., Middleton, T., and Graves, A. (2002). Applications of crop/soil simulation models in tropical agricultural systems.

McSweeney, C. F., Jones, R. G., Lee, R. W., and Rowell, D. P. (2015). Selecting CMIP5 GCMs for downscaling over multiple regions. Climate Dynamics, 44(11–12), 3237–3260. https://doi.org/10.1007/s00382-014-2418-8

Mehrotra, K., Mohan, C. K., and Ranka, S. (1997). Elements of artificial neural networks. MIT press.

Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., ... and Abderrahmane, B. (2020). Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Science Reviews, 207, 103225.

Misra, A. K. (2014). Climate change and challenges of water and food security. International Journal of Sustainable Built Environment, 3(1), 153-165.

Mohanty, M., Sinha, N.K., Hati, K.M., Chaudhary, R.S. and Patra, A.K. (2015). Crop growth simulation modelling and climate change. Scientific Publishers.

Monsalve-Torra, A., Ruiz-Fernandez, D., Marin-Alonso, O., Soriano-Payá, A., Camacho-Mackenzie, J., and Carreño-Jaimes, M. (2016). Using machine learning methods for predicting inhospital mortality in patients undergoing open repair of abdominal aortic aneurysm. Journal of biomedical informatics, 62, 195-201.

Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., and Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1). https://doi.org/10.1186/s40537-014-0007-7

Nevavuori, P., Narra, N., and Lipping, T. (2019). Crop yield prediction with deep convolutional neural networks. Computers and Electronics in Agriculture, 163, 104859. https://doi.org/10.1016/j.compag.2019.104859.

Newman, S. J., and Furbank, R. T. (2021). Explainable machine learning models of major crop traits from satellite-monitored continent-wide field trial data. Nature Plants, 7(10), 1354-1363.

Norton, S., and Suppe, F. (2001). Why atmospheric modeling is good science. Changing the atmosphere: Expert knowledge and environmental governance, 67-105.

Oberkampf, W. L., DeLand, S. M., Rutherford, B. M., Diegert, K. V., and Alvin, K. F. (2002). Error and uncertainty in modeling and simulation. Reliability Engineering and System Safety, 75(3), 333-357.

Odum, H. T., and Odum, E. C. (2000). Modeling for all scales: an introduction to system simulation. Elsevier.

Olivé, A. (2007). Conceptual modeling of information systems. Springer Science and Business Media.

Oteng-Darko, P., Yeboah, S., Addy, S. N. T., Amponsah, S., and Danquah, E. O. (2013). Crop modeling: A tool for agricultural research–A review.

Pelling, M. (2010). Adaptation to climate change: from resilience to transformation. Routledge.

Peters, R., and Vanzetti, D. (2004). User manual and handbook on agricultural trade policy simulation model (ATPSM). Policy Issues in International Trade and Commodities Study Series, (24).

Poirazi, P., Brannon, T., and Mel, B. W. (2003). Pyramidal neuron as two-layer neural network. Neuron, 37(6), 989-999.

Porter, J. R., and Semenov, M. A. (2005). Crop responses to climatic variation. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2021-2035.

Rakha, H., Hellinga, B., Van Aerde, M., and Perez, W. (1996, January). Systematic verification, validation and calibration of traffic simulation models. In 75th Annual Meeting of the Transportation Research Board, Washington, DC.

Raksmey Thinh, Klairung Samart, and Naratip Jansakul. (2020). Linear regression models for heteroscedastic and non-normal data. Scienceasia, 46, 353. https://doi.org/10.2306/scienceasia1513-1874.2020.047

Rao, R. P., and Ballard, D. H. (1995). An active vision architecture based on iconic representations. Artificial intelligence, 78(1-2), 461-505.

Reynolds, M., Kropff, M., Crossa, J., Koo, J., Kruseman, G., Molero Milan, A., ... and Vadez, V. (2018). Role of modelling in international crop research: overview and some case studies. Agronomy, 8(12), 291.

Riedmiller, M. (1994). Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms. Computer Standards and Interfaces, 16(3), 265-278.

Roberts, M. J., Braun, N. O., Sinclair, T. R., Lobell, D. B., and Schlenker, W. (2017). Comparing and combining process-based crop models and statistical models with some implications for climate change. Environmental Research Letters, 12(9), 095010.

Rockström, J., and Barron, J. (2007). Water productivity in rainfed systems: overview of challenges and analysis of opportunities in water scarcity prone savannahs. Irrigation Science, 25, 299-311.

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H., and Jones, J. W. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3268–3273. https://doi.org/10.1073/pnas.1222463110

Sachin, G., Jeelani, M.A., Nagajothi, K., Rana, M., and Murugan, B. S. (2019). Automation of the dssat crop growth simulation model. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 251–256. https://doi.org/10.5194/isprs-archives-xlii-3-w6251-2019

Saïdou, A. A., Thuillet, A. C., Couderc, M., Mariac, C., and Vigouroux, Y. (2014). Association studies including genotype by environment interactions: prospects and limits. BMC genetics, 15, 1-12.

Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Networks 61, 85–117.

Schmidt, M. W. I., Torn, M. S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E. (2011) Persistence of soil organic matter as an ecosystem property, Nature, 478, 49–56.

Sharifi, M. A. (1992). Development of an appropriate resource information system to support agricultural management at farm enterprise level: a prototype design for a decision support system in Moghan Agro-Industrial Complex, Iran. Wageningen University and Research.

Sharma, S., Sharma, S., and Athaiya, A. (2017). Activation functions in neural networks. Towards Data Sci, 6(12), 310-316.

Singh, K., Kaur, T., Bhullar, M.S., and Brar, A.S. (2018). The Critical period for weed control in spring maize in North-West India. Maydica, 61(1), 7.

Singh, P., and Kaur, A. (2022). A systematic review of artificial intelligence in agriculture. Deep learning for sustainable agriculture, 57-80.

Singh, R. K. (2008). Artificial neural network methodology for modelling and forecasting maize crop yield. Agricultural Economics Research Review, 21(1), 5-10.

Sivapalan, M. (2006). Pattern, process and function: elements of a unified theory of hydrology at the catchment scale. Encyclopedia of hydrological sciences.

Smith, B. A., Hoogenboom, G., and McClendon, R. W. (2009). Artificial neural networks for automated year-round temperature prediction. Computers and Electronics in Agriculture, 68(1), 52-61.

Smith, P. (2012). Soils and climate change, Curr. Opin. Environ. Sustain., 4, 539–544, doi: 10.1016/j.cosust.2012.06.005.

Smits, J. R. M., Melssen, W. J., Buydens, L. M. C., and Kateman, G. (1994). Using artificial neural networks for solving chemical problems: Part I. Multi-layer feed-forward networks. Chemometrics and Intelligent Laboratory Systems, 22(2), 165-189.

Soltani, A. (2012). Modeling physiology of crop development, growth and yield. CABi.

Sousa, S. F., Ribeiro, A. J., Coimbra, J. T. S., Neves, R. P. P., Martins, S. A., Moorthy, N. S. H. N., ... and Ramos, M. J. (2013). Protein-ligand docking in the new millennium–a retrospective of 10 years in the field. Current medicinal chemistry, 20(18), 2296-2314.

Stathakis, D. (2009). How many hidden layers and nodes?. International Journal of Remote Sensing, 30(8), 2133-2147.

Stöckle, C. O., Donatelli, M., and Nelson, R. (2003). CropSyst, a cropping systems simulation model. European journal of agronomy, 18(3-4), 289-307.

Subash, N., Shamim, M., Singh, V. K., Gangwar, B., Singh, B., Gaydon, D. S., ... and Sikka, A. K. (2015). Applicability of APSIM to capture the effectiveness of irrigation management decisions in rice-based cropping sequence in the Upper-Gangetic Plains of India. Paddy and water environment, 13, 325-335.

Suzuki, H., Kawakami, H., Kobayashi, T., and Ozaki, S. (2023). Extended terramechanics model for machine–soil interaction: Representation of change in the ground shape and property via cellular automata. Soil and Tillage Research, 226, 105578.

Tabche, I. (2002). Cost-benefit analysis within a sustainable development paradigm: An application to a production system. University of Bath (United Kingdom).

Taborda, D. M., Pedro, A. M., and Pirrone, A. I. (2022). A state parameter-dependent constitutive model for sands based on the Mohr-Coulomb failure criterion. Computers and Geotechnics, 148, 104811.

Tamilselvi, R., Mohanasathiya, K. S., and Prasath, S. (2024). Developed a Smooth Support Vector Machine to Predict the Crop Production in Alluvial Soil and Red Soil Regions of Tamil Nadu, India. NATURALISTA CAMPANO, 28(1), 279-297.

Tangelder, J. W., and Veltkamp, R. C. (2008). A survey of content based 3D shape retrieval methods. Multimedia tools and applications, 39, 441-471.

Tay, A., Lafont, F., and Balmat, J. F. (2021). Forecasting pest risk level in roses greenhouse: Adaptive neuro-fuzzy inference system vs artificial neural networks. Information Processing in Agriculture, 8(3), 386-397.

Technow, F., Messina, C. D., Totir, L. R., and Cooper, M. (2015). Integrating crop growth models with whole genome prediction through approximate Bayesian computation. PloS one, 10(6), e0130855.

Thacker, B. H., Doebling, S. W., Hemez, F. M., Anderson, M. C., Pepin, J. E., and Rodriguez, E. A. (2004). Concepts of model verification and validation.

Thomas, G., Adarsh, S., and Mathew, S. (2021). Future Agriculture [abstract]. In: Abstracts, 2nd International Web-Conference on Smart Agriculture for Resource Conservation and Ecological Stability, 29-31st October, 2021, Lucknow, p.22. Available: https://www.researchgate.net/publication/357746005_Future_Agriculture

Thornley, J. H., and France, J. (Eds.). (2007). Mathematical models in agriculture: quantitative methods for the plant, animal and ecological sciences. Cabi.

Ttayagarajan, T., Ponnavaikko, M., Shanmugam, J., Panda, R. C., and Rao, P. G. (1998). Artificial neural networks: principle and application to model based control of drying systems - a review. Drying Technology, 16(6), 931-966. https://doi.org/10.1080/07373939808917449

Ti, K. S., Huat, B. B., Noorzaei, J., Jaafar, M. S., and Sew, G. S. (2009). A review of basic soil constitutive models for geotechnical application. Electronic Journal of Geotechnical Engineering, 14, 1-18.

Tomy, B., Adarsh, S., and Mathew, S. (2021). Artificial Intelligence and Internet of Things in Agriculture [abstract]. In: Abstracts, 2nd International Web-Conference on Smart Agriculture for Resource Conservation and Ecological Stability, 29-31st October, 2021, Lucknow, p.8. Available: https://www.researchgate.net/publication/357742034_Artificial_Intelligence_and_Internet_of_Things_in_Agriculture

Tonneijck, F. H., Jansen, B., Nierop, K. G. J., Verstraten, J. M., Sevink, J., and De Lange, L. (2010). Carbon stocks and stabilization mechanisms in volcanic ash soils in natural Andean ecosystems of northern Ecuador, Eur. J. Soil Sci., 61, 392–405.

Tubiello, F. N., Rosenzweig, C., Goldberg, R. A., Jagtap, S., and Jones, J. W. (2002). Effects of climate change on US crop production: Simulation results using two different GCM scenarios. Part I: Wheat, potato, maize, and citrus. Climate Research, 20(3), 259–270. https://doi.org/10.3354/cr020259

Upadhyay, K. (2020). On the mechanics of visco-hyperelastic soft materials. University of Florida.

Van Beek, L. P. H., Wada, Y., and Bierkens, M. F. (2011). Global monthly water stress: 1. Water balance and water availability. Water Resources Research, 47(7).

Van Gaelen, H., Tsegay, A., Delbecque, N., Shrestha, N., Garcia, M., Fajardo, H., ... and Raes, D. (2015). A semi-quantitative approach for modelling crop response to soil fertility: evaluation of the AquaCrop procedure. The Journal of Agricultural Science, 153(7), 1218-1233.

van Ittersum, M. K., Leffelaar, P. A., Van Keulen, H., Kropff, M. J., Bastiaans, L., and Goudriaan, J. (2003). On approaches and applications of the Wageningen crop models. European journal of agronomy, 18(3-4), 201-234.

Van Klompenburg, T., Kassahun, A., and Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 177, 105709.

van Leeuwen, C. C., Mulder, V. L., Batjes, N. H., and Heuvelink, G. B. (2022). Statistical modelling of measurement error in wet chemistry soil data. European Journal of Soil Science, 73(1), e13137.

van Vuuren, D. P., Kok, M., Lucas, P. L., Prins, A. G., Alkemade, R., van den Berg, M., ... and Stehfest, E. (2015). Pathways to achieve a set of ambitious global sustainability objectives by 2050: explorations using the IMAGE integrated assessment model. Technological Forecasting and Social Change, 98, 303-323.

Venkatasubramanian, V., Rengaswamy, R., Yin, K., and Kavuri, S. N. (2003). A review of process fault detection and diagnosis: Part I: Quantitative model-based methods. Computers and chemical engineering, 27(3), 293-311.

Badenko, V., Topaj, A., Yakushev, V. P., Mirschel, W., and Nendel, C. (2017). Crop models as research and interpretative tools. Sel'skokhozyaistvennaya Biologiya, 52(3), 437-445. https://doi.org/10.15389/agrobiology.2017.3.437eng

Vos, J., Evers, J. B., Buck-Sorlin, G. H., Andrieu, B., Chelle, M., and De Visser, P. H. (2010). Functional–structural plant modelling: a new versatile tool in crop science. Journal of experimental Botany, 61(8), 2101-2115.

Vries, F. P., and Laar, H. H. (1982). Simulation of growth processes and the model BACROS. In Simulation of plant growth and crop production (pp. 114-135). Pudoc.

Wani, K. M. N. S., and Showkat, R. (2018). Soil constitutive models and their application in geotechnical engineering: a review. International Journal of Engineering Research and Technology (IJERT), 7(4), 137-145.

Watson, R. T. (2008). Data management, databases and organizations. John Wiley and Sons.

Whisler, F. D., Acock, B., Baker, D. N., Fye, R. E., Hodges, H. F., Lambert, J. R., ... and Reddy, V. R. (1986). Crop simulation models in agronomic systems. Advances in agronomy, 40, 141-208.

Wieland, W. and Mirschel, (2008). Adaptive fuzzy modelling versus artificial neural network, Environmental Modelling and Software, 23, 215-224.

Willey, R. W., and Heath, S. B. (1969). The quantitative relationships between plant population and crop yield. Advances in agronomy, 21, 281-321.

Wojciechowski, T., Niedbala, G., Czechlowski, M., Nawrocka, J.R., Piechnik, L., and Niemann, J. (2016). Rapeseed seeds quality classification with usage of VIS-NIR fiber optic probe and artificial neural networks. In Proceedings of the 2016 International Conference on Optoelectronics and Image Processing (ICOIP), Warsaw, Poland, 10–12 June, pp. 44–48.

Yang, J., and Zhao, Y. (2023). Performance and application of air quality models on ozone simulation in China–A review. Atmospheric Environment, 293, 119446.

Yao, Y., Xu, Y., and Arulrajah, A. (2017). Sustainable measures for mitigation of flooding hazards: a case study in shanghai, china. Water, 9(5), 310. https://doi.org/10.3390/w9050310

Yao, X., and Liu, Y. (1997). A new evolutionary system for evolving artificial neural networks. IEEE transactions on neural networks, 8(3), 694-713.

Young, I. M., and Crawford, J. W. (2004). Interactions and self-organization in the soil-microbe complex, Science, 304, 1634–1637.

Zarrabi, M. (2020). A viscoplastic constitutive model for cyclic clay behavior (Doctoral dissertation, Ecole Polytechnique, Montreal (Canada)).

Zhang, J., Zhao, L., Deng, S., Xu, W., and Zhang, Y. (2017). A critical review of the models used to estimate solar radiation. Renewable and Sustainable Energy Reviews, 70, 314-329.

Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J. L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., …and Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 114(35), 9326–9331. https://doi.org/10.1073/pnas.1701762114

Zhu, F., Ye, F., Fu, Y., Liu, Q., and Shen, B. (2019). Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network. Scientific reports, 9(1), 6734.

Zimdahl, R.L. 2004. Weed-crop Competition: A Review. Wiley-Blackwell, 211p.


Refbacks

  • There are currently no refbacks.


Informatics Studies:  ISSN: 2583-8994 (Online), 2320-530X (Print)