Marine Bacteriocins: Prospects and Informatics Tools

Sarika A R


Marine environments have always been a source of great interest for research on new bioactive compounds.  Among the various bioactive compounds from marine bacteria, the peptides called bacteriocins got considerable attention to replace antibiotics in the near future.  Bacteriocins are generally the low molecular weight peptides ribosomally synthesized by bacteria and can kill or inhibit the growth of closely related or unrelated strains of bacteria.  Both Gram-positive and Gram-negative bacteria produce bacteriocins; the structure and mode of action differ.     Bacteriocins from marine bacteria have the prospects to be used as probiotics and antibiotics in the seafood industry and in other wider applications as novel antimicrobials.  The conventional time-consuming bioassay-guided process for purifying the vast majority of the bioactive compounds is currently being replaced with the advancement in molecular and computational tools.   The whole microbial genome sequencing and metagenomic data are being employed and bacteriocin Biosynthetic Gene Clusters could be identified by Genome mining from the bacteriocin database BACTIBASE, BAGEL, and using bioinformatic tools like anti-SMASH, BOA, and NeuBI.  Genomics and bioinformatics technologies can be extremely useful in identifying and isolating bacteriocins with significant application from marine bacteria.


Marine Bacteria, Bacteriocins, Classifications, Bacteriocin Database, Genome Mining

Full Text:



Aiba, Y., Suzuki, N., Kabir, A.M.A., Takagi, A. and Koga, Y. (1998). Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. Am. J. Gastroenterol., 93: 2097–2101.

Annamalai, N., Manivasagan, P., Balasubramanian, T. and Vijayalakshmi, S. (2008). Enterocin from Enterococcus faecium isolated from mangrove environment. African J. Biotech., 8: 6311–6316.

Bakkal, S., Robinson, S. M., Riley, M. A. (2012). Bacteriocins of aquatic microorganisms and their potential applications in the seafood industry. In: Health and Environment in Aquaculture (E. Carvalho, Ed) Croatia: InTech.

Besse, A., Peduzzi, J., Rebuffat, S. et al. (2015) Antimicrobial peptides and proteins in the face of extremes: lessons from archaeocins. Biochimie. 118: 344–55.

Blin, K., Medema, M.H., Kazempour, D. et al. (2013). antiSMASH 2.0--a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 41: W204-12.

Blin, K., Wolf, T., Chevrette, M.G. (2017). antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45(W1): W36-W41.

Blin, K., Shaw, S., Steinke, K., et al. (2019) AntiSMASH 5.0: Updates to the Secondary Metabolite Genome Mining Pipeline. Nucleic Acids Res. 47, W81–W87.

Blin, K., Shaw, S., Kloosterman, A. M. et al. (2021). antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 49: W29-W35.

Carraturo, A., Raieta, K., Ottaviani, D., & Russo, G.L. (2006). Inhibition of Vibrio parahaemolyticus by a bacteriocin-like inhibitory substance (BLIS) produced by Vibrio mediterranei. Journal of applied microbiology, 101(1): pp. 234-241, ISSN 1364-5072.

Cascales E., Buchanan S. K., Duché D., Kleanthous C., Lloubes R., Postle K., et al. (2007). Colicin biology. Microbiol. Mol. Biol. Rev. 71 158–229. 10.1128/MMBR.00036-06

Chopra, L., G. Singh, V. Choudhary, and D. K. Sahoo (2014). Sonorensin: An antimicrobial peptide, belonging to the heterocycloanthracin subfamily of bacteriocins, from a new marine isolate, Bacillus sonorensis MT93. Appl. Environ. Microbiol., 80: 2981–2990.

Collins, F.W.J., O’Connor, P.M., O’Sullivan, O. et al. (2017) Bacteriocin Gene-Trait matching across the complete Lactobacillus Pan-genome. Sci Rep 7, 3481. doi 10.1038/s41598-017-03339-y

Cotter, P. D., Hill, C., Ross, R.P. (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788.

Cotter, P.D., Ross, R.P., Hill, C. (2013). Bacteriocins - a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105.

Das, S., Ward, L. R. and Burke, C. (2008). Prospects of using marine actinobacteria as probiotics in aquaculture. Appl. Microbiol. Biotechnol., 81: 419–429.

de Jong, A., van Heel, A.J., Kok, J., Kuipers, O.P. (2010). BAGEL2: mining for bacteriocins in genomic data. Nucleic Acids Res. 38(Web Server issue): W647-W651. doi:10.1093/nar/gkq365.

de Jong, A., van Hijum, S.A.FT., Bijlsma, J.J.E., Kok,J., Kuipers, O.P. (2006). BAGEL: A web-based bacteriocin genome mining tool. Nucleic Acids Res. 34: W273.

Deshmukh, P. V., and Thorat, P. R. (2013). Bacteriocins – a new trend in antimicrobial food packaging. Int. J. Adv. Res. Eng. App. Sci., 2: 278–6252.

Drider, D., Fimland, G., Hechard, Y., McMullen, L. M., and Prevost, H. (2006). The continuing story of class IIa bacteriocins. Microbiology and molecular biology reviews: MMBR, 70(2), pp. 564-582, ISSN:1092-2172

Ellen, A.F., Rohulya, O.V., Fusetti, F., Wagner, M., Albers, S.V., and Driessen, A.J. (2011). The sulfolobicin genes of Sulfolobus acidocaldarius encode novel antimicrobial proteins. Journal of bacteriology, pp. ISSN 1098-5530

Fedorova, N.D., Moktali, V. and Medema, M.H. (2012) Bioinformatics approaches and software for detection of secondary metabolic gene clusters. In: Keller NP, Turner G, editors. Fungal secondary metabolism: methods and protocols. 944th ed. Totowa, NJ: Humana Press. p. 23–45.

Field, D., Cotter, P., Hill, C., & Ross, R.P., (2007). Bacteriocin Biosynthesis, Structure, and Function, In: Research and Applications in Bacteriocins, Riley, M.A., Gillor, O. (Eds.), pp. 5-41, ISBN 1-904933-23-8, Norfolk, U.K.

Galvez, A., Abriouel, H,, Omar, N,B., et al. (2011) Food applications and regulation. In: Prokaryotic Antimicrobial Peptides, New York: Springer. 353–90.

Galvez, A., Lopez, R. L., Abriouel, H., Valdivia, E. and Omar, N. B. (2008) Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol., 28: 125–152.

García, P., Rodríguez, L., Rodríguez, A., and Martínez, B. (2010). Food biopreservation: promising strategies using bacteriocins, bacteriophages and endolysins. Trends in Food Science & Technology, 21(8), pp. 373-382.

Gillor, O., Kirkup, B.C., and Riley, M.A. (2004). Colicins and microcins: the next generation antimicrobials. Advances in applied microbiology, Vol.54, pp. 129-146.

Hamid, Md-N. and Friedberg, I. (2019). Identifying antimicrobial peptides using word embedding with deep recurrent neural networks. Bioinformatics. 35(12): 2009-2016.

Hammami,R. et al. (2007) BACTIBASE: a new web-accessible database for bacteriocin characterization. BMC Microbiol., 7, 89.

Hammami,R., Zouhir, A., Lay, C. L., Hamida J. B. and Fliss, I. (2010). BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol., 10:22

Hanchi, H., Hammami, R., Gingras, H. et al. (2017) Inhibition of MRSA and of Clostridium difficile by durancin 61A: synergy with bacteriocins and antibiotics. Future Microbiol. 12: 205–12.

Heng, N.C.K., Wescombe, P.A., Burton, J.P., Jack, R.W., and Tagg, J.R., (2007). The Diversity of Bacteriocins in Gram-Positive Bacteria, in:Bacteriocins: Ecology and Evolution, Riley, M.A., Chavan, M.A. (Eds.), pp. 45-92, ISBN 3-540-36603-2, Heidelberg, Germany.

Kim, J. A. and S. K. Kim. Bioactive peptides from marine sources as potential anti-inflammatory therapeutics. Curr. Protein Pept. Sci., 14: 177–182 (2013).

Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Lett., 12: 224–227.

Klaenhammer, T.R. (1988). Bacteriocins of lactic acid bacteria. Biochimie. 1988; 70:337–49.

Leroy, F. and De Vuyst, L. (2004) Lactic Acid Bacteria as Functional Starter Cultures for the Food Fermentation Industry. Food Science and Technology, 15, 67-78.

Lordan, S., R. P. Ross, C. Stanton. (2011) Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Marine Drugs., 9: 1056–1100.

Maia, O. B., Duarte, R., Silva, A. M., Cara, D. C. and Nicoli, J. R. (2001). Evaluation of the components of a commercial probiotic in gnotobiotic mice experimentally challenged with Salmonella enterica subsp. enterica ser. Typhimurium. Vet Microbiol., 79: 183–189.

Maqueda, M., Galvez, A., Bueno, M.M., Sanchez-Barrena, M.J., Gonzalez, C., Albert, A., Rico, M., & Valdivia, E. (2004). Peptide AS-48: prototype of a new class of cyclic bacteriocins. Current protein & peptide science, 5(5). pp. 399-416, ISSN 1389- 2037

McCall, J.O., and Sizemore, R.K. (1979). Description of a bacteriocinogenic plasmid in Beneckea harveyi. Applied and Environmental Microbiology, 38(5), pp. 974-979, ISSN 0099-2240

Medema, M. H.,Blin, K., Cimermacic, P et al. (2011). antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acid Res. 39: W339-346.

Messi, P., Guerrieri, E., and Bondi, M. (2003). Bacteriocin-like substance (BLS) production in Aeromonas hydrophila water isolates. FEMS Microbiology Letters, 220(1). pp. 121-125, ISSN 03781097.

Michel-Briand, Y., and Baysse, C. (2002). The pyocins of Pseudomonas aeruginosa. Biochimie, Vol.84, No.5-6, pp. 499-510, ISSN 0300-9084.

Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013) Efficient Estimation of Word Representations in Vector Space. Proceedings of Workshop at ICLR. arXiv:1301.3781.

Mills S., Serrano L., Griffin C., O’connor P. M., Schaad G., Bruining C., et al. (2011). Inhibitory activity of Lactobacillus plantarum LMG P-26358 against Listeria innocua when used as an adjunct starter in the manufacture of cheese. Microbial Cell Factories 10 S7. 10.1186/1475-2859-10-S1-S7.

Morton, J. T., Freed, S. D., Lee, S. W. and Friedberg, I. (2015). A large-scale prediction of bacteriocin gene suggests a wide functional spectrum for bacteriocins. BMC Bioinformatics. 16:381.

O'Connor, E.M., and Shand, R.F. (2002). Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. Journal of industrial microbiology & biotechnology, 28(1), pp. 23-31, ISSN 1367-5435.

Oman. T.J., van der Donk, W.A. (2009) Insights into the mode of action of the two-peptide lantibiotic haloduracin. ACS Chem. Biol. 4:865–74

Ongey, E.L., Yassi, H., Pflugmacher, S. et al. (2017). Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clinical studies. Biotechnol. Lett. 39: 473–482.

Pieterse, R., Todorov, S.D., Dicks, L.M. (2010). Mode of action and in vitro susceptibility of mastitis pathogens to macedocin ST91KM and preparation of a teat seal containing the bacteriocin. Braz J Microbiol., 41:133–45.

Pilet, M.F., and Leroi, F., (2011). Applications of protective cultures, bacteriocins, and bacteriophages in fresh seafood and seafood products, In: Protective cultures, 326 Health and Environment in Aquaculture antimicrobial metabolites and bacteriophages for food and beverage biopreservation, pp. 1- 21, ISBN 978-1-84569-669-6, Zurich, Switzerland

Prasad, S., Morris, P.C., Hansen, R., Meaden, P.G., & Austin, B. (2005). A novel bacteriocin-like substance (BLIS) from a pathogenic strain of Vibrio harveyi. Microbiology, 151(9). pp. 3051-3058, ISSN 1350-0872.

Prichula, J., Primon-Barros, M., Luz, R.C.Z., et al. (2021) Genome Mining for Antimicrobial Compounds in Wild Marine Animals-Associated Enterococci. Mar Drugs. 19(6):328. Published 2021 Jun 6. doi:10.3390/md19060328.

Prieto, M. L., O’Sullivan, L., Tan, S. P., McLoughlin, P, Hughes, H., O’Connor, P. M., Cotter, P. D., Lawlor, P. G. and Gardiner, G. E. (2012). Assessment of the bacteriocinogenic potential of marine bacteria reveals lichenicidin production by seaweed-derived Bacillus spp. Mar. Drugs., 10: 2280–2299.

Prioult, G., Fliss, I. and Pecquet, S. (2003). Effect of probiotic bacteria on induction and maintenance of oral tolerance to beta-lactoglobulin in gnotobiotic mice. Clin. Diagnost Lab Immunol., 10: 787–792.

Ramu, R., Shirahatti, P.S., Devi, A.T. et al. (2015) Bacteriocins and their applications in food preservation. Crit Rev Food Sci Nutr, DOI: 10.1080/10408398.2015.1020918.

Rather, I A., Galope, R., Bajpai, V. K., Lim J., Paek, W K. and Park, Y-H (2017): Diversity of Marine Bacteria and Their Bacteriocins: Applications in Aquaculture, Reviews in Fisheries Science & Aquaculture, DOI: 10.1080/23308249.2017.1282417.

Rea, M. C., Sit, C. S., Clayton, E., O'Connor, P. M., Whittal, R. M., Zheng, J., et al. (2010). Thuricin, C. D., a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl. Acad. Sci. U.S.A. 107, 9352–9357. doi: 10.1073/pnas.0913554107.

Reeves, P. (1965). The Bacteriocins. Bacteriological reviews, Vol.29, pp. 24-45, ISSN 0005-3678

Russel, A. H. and Truman, A.W. (2020). Genome Mining Strategies for Ribosomallly Synthesised and Post Translationally Modified Peptides. Computational and Structural Biotechnology Journal, 1838-1851.

Sarika, A. R., Lipton, A. P., Aishwarya, M. S. and Dhivya. R. S. (2012). Isolation of a bacteriocin-producing Lactococcus lactis and application of its bacteriocin to manage spoilage bacteria in high-value marine fish under different storage temperatures. Appl. Biochem. Biotechnol., 167: 1280– 1289.

Selvendran, M. and Michael Babu, M. (2013). Studies on novel bacteriocin-like inhibitory substances (BLIS) from microalgal symbiotic Vibrio spp. MMB2 and its activity against aquatic bacterial pathogens. J. Appl. Pharm Sci., 3: 169–175.

Selvin, J., Joseph, S., Asha, K.R., Manjusha, W.A., Sangeetha, V.S., Jayaseema, D.M., Antony, M.C., and Denslin Vinitha, A.J. (2004). Antibacterial potential of antagonistic Streptomyces sp. isolated from marine sponge Dendrilla nigra. FEMS microbiology ecology, 50(2): 117-122, ISSN 1574-6941.

Shand, R.F., and Leyva, K.J., (2007). Peptide and Protein Antibiotics from the Domain Archaea: Halocins and Sulfolobicins, In:Bacteriocins: Ecology and Evolution, Riley, M.A., Chavan, M.A. (Eds.), pp. 93-109, ISBN 3-540-36603-02, Heidelberg, Germany

Sigwart, J. D. D., Lindberg, D. R. R., Chen, C., and Sun, J. (2021). Molluscan phylogenomics requires strategically selected genomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1825).

Smitha, S. and Bhat, S. G. (2013). Thermostable bacteriocin BL8 from Bacillus licheniformis isolated from marine sediment. J. Appl. Microbiol., 114: 688–694.

Soltani, S., Hammmami, R., Cotter, P. D., et al. (2021). Bacteriocins as a New Generation of Antimicrobials: Toxicity Aspects and Regulations. FEMS Microbiology Reviews, Fnaa 039, pp 1-24.

Sugita, H., Matsuo, N., Hirose, Y., Iwato, M., and Deguchi, Y. (1997). Vibrio sp. strain NM 10, isolated from the intestine of a Japanese coastal fish, has an inhibitory effect against Pasteurella piscicida. Applied and Environmental Microbiology, 63(12): 4986-4989, ISSN 0099-2240.

Sun, C., Li, Y., Mei, S., Lu, Q., Zhou, L., and Xiang, H. (2005). A single gene directs both production and immunity of halocin C8 in a haloarchaeal strain AS7092. Molecular microbiology, Vol.57, No.2, pp. 537-549, ISSN 0950-382X

Udwary, D.W., Zeigler, L., Asolkar, R.N., Singan, V., Lapidus, A., Fenical, W., Jensen, P.R., Moore, B.S. (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci U S A.;104(25):10376-81. doi: 10.1073/pnas.0700962104.

Undabarrena A, Ugalde, J.A., Seeger, M., Cámara, B. (2017). Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ., 5: e2912. doi: 10.7717/peerj.2912.

van Heel, A. J., de Jong, A., Montalben-Lopez, M., Kok J. and Kuipers, O. P. (2013). BAGEL3: automated identification of genes encoding bacteriocins and (non-) bactericidal post translationally modified peptides. Nucleic Acids Res., 41, W448-W453

van Heel, A.J., de Jong, A., Song, C., Viel, J.H., Kok, J. and Kuipers, O.P. (2018) BAGEL4: A User-Friendly Web Server to Thoroughly Mine RiPPs and Bacteriocins. Nucleic Acids Res., 46, W278–W281.

Weber, T. (2014). In silico tools for the analysis of antibiotic biosynthetic pathways. Int. J. Med. Microbiol. 304:230–5. 31.

Weber, T. (2014). In silico tools for the analysis of antibiotic biosynthetic pathways. Int. J. Med. Microbiol. 304:230–5. 31.

Wilson, G.S., Raftos, D.A., Corrigan, S.L., and Nair, S.V. (2010). Diversity and antimicrobial activities of surface-attached marine bacteria from Sydney Harbour, Australia. Microbiological Research, 165(4): 300-311, ISSN 1618-0623

Wohlleben, W., Mast, Y., Stegmann, E. and Ziemert, N. (2016) Antibiotic Drug Discovery. Microb. Biotechnol. 2016, 9, 541–548.

Xin, B., Liu, H., Zheng, J., Xie, C., Gao, Y., Dai, D., Peng, D., Ruan, L., Chen, H. and Sun, M. (2005). In Silico Analysis Highlights the Diversity and Novelty of Circular Bacteriocins in Sequenced Microbial Genomes. Msystems. 5: e00047-20.

Zai, A.S., Ahmad, S., and Rasool, S.A. (2009). Bacteriocin production by indigenous marine catfish associated Vibrio spp. Pakistan Journal of pharmaceutical sciences, 22(2): 162-167, ISSN 1011-601X

Zhao, X-Q. (2011). Genome-based Studies of Marine Microorganimsms to Maximize the Diversity of Natural Products Discovery for Medical Treatments. 384572, 11 p

Zheng, L. H., Wang,Y. J., Sheng, J. Wang, F. Zheng, Y. Lin, X. K. and Sun, M. (2011). Antitumor peptides from marine organisms. Mar. Drugs., 9: 1840–1859.

Zimina, M., Babich, O., Prosekov, A., Sukhikh, S., Ivanova, S., Shevchenko, M. and Noskova, S. (2020). Overview of Global Trends in Classification, Methods of Preparation and Application of Bacteriocins. Antibiotics, 9: 553.

Zschüttig, A., Zimmermann, K., Blom, J., et al. (2012). Identification and characterization of microcin S, a new antibacterial peptide produced by probiotic Escherichia coli G3/10, PLoS One, 7(3): p. e33351.


  • There are currently no refbacks.

Print Version ISSN: 2320-530X (Application for ISSN Online Version Pending)